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Scope of Contract NAS2-4151

. Work under Contract NAS2-4151 started on February 1,
1967. Phase I Report of September 1967 develops analyticai
concepts for a random loads and vibrations analysis of 1lift-
ing rotors. .Phase II Report of August 1968 presents a per-
turbation solution method for random blade flapping. Phase
IIT Report of June 1965 develops a more general method to'
include high rotor advance ratios and makgs use of a speci-
fice atﬁpspheric turbulenge model. Phase IV Report of June
1970 extends the method to the computation of threshold
crossing statistics for réndom blade.flapping and introduces
non-uniformity of the vertical turbulence velocity in the
longitudinal directibn._ During FY 1971 the work was extended
in three d;rectibns, resultihg in 3. separate Phase V reports.
Phase V-A Report'éovers the inclusion of blade torsional
flexibility in the blade random gust response statistics.
Phase V-B Report covers the analysis of lifting rotor gust
alleviation methods and rotor dynamic stability. Phase V-C
Report describes the efforts to develop experimental methods
of substantiating the random loads and vibration analysis.
The work summarizéd in Phase V-A Report was performed under
Modification § to‘subject contract. The work summarized in
Phase V-B and Phaée v-C Reports was performed under Modifica-

tion 6 to subject contract. A proposal has been submitted



for an extension of Contract NAS2-4151 through FY 1972 and
FY 1973. The scope of the proposed extension is to remove
some of the limitations of the present analytical model and
at.the same time simplify the method of analysis, and to

conduct model tests to support the analysis.
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Abstract

The previously developéd method of determining the flap-
ping gust response statistics of a rigid blade flexibly hinged
at the rotor center has been extended to include torsional
blade.flexibility. Quasi-steady aerodynamics have been as-
sumed and a torsion mode where the amplitude is proportional
to the distance from the rotor center. Under the assumptions
made aerodynamic tqrsional moment inputs are limited to the
region of reverse flow where the aerodynamic center and the
section center of gravity are separated by half the blade
chord. Thus negligible effects of blade torsional flexibility
are obtained'for rotor conditions with negligible reverse flow
effects..: Numeridal.examples'refe:,tolconditions with 1.6

rotor advance ratio. It was found that the random flapping
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response is only moderately‘affected by the torsional flexi-
bility, however large random torsional loads and defléctions
occur even if flapping is completely suppressed. The coup-
ling of the actual flapping motion into the blade torsional
motioﬂ prodﬁces a substantial increase in the random tor-

sional loads or deflecfions.
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Notation
\'4
R
Q .
t, T, t,
Wy Wy, Wy
L
saal0)s 8y o, (w)
: J
8. . (w)
X 5%y
b = V/QR
B
a = 2u/(L/R)
W
A = W/QR
B
§
p2 = 1 + w§/92

(t), m, (t)
1 A

—v-

flight velocity

rotor radius

angular rotor speed

time variables

circular frequencies

scale of longitudinal.turbulence
two-sided scalar power spectral den-
sities for random functions A(t),
xj(t), etc.

two-sided scalar cross-spectral den-
sity between random functions xj(t)
and xk(t)

rotor advance ratio

tip-loss factor

non-dimensional turbulence parameter

vertical turbulence velocity

non~dimensional vertical turbulence
velocity :

blade flapping angle
torsional deflection of blade tip

elastic flapping restraint parameter

periodic aerodynamic coefficients

blade Lock inertia number

blade torsional frequency



Y¥(w,t)
yjz(w,t)
szc(w 9t)
yjf:s,(w ,t)
§(es.)
E[(...]

Rxx(tl,t2)
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. flapping mass moment of inertia

feathering mass moment of inertia
blade chord

non-dimensional quantities characteriz-
ing respectively the aerodynamic damp-
ing of the blade torsional deflections
and the excitation of blade torsion by
the lift of the reverse flow region,
see Eq. (3-6)

rate of change of B, 6§, X, etc.

rate of change of é, é, etec.

state or output vector

state matrix

coupling matrix

stationary or non-stationary input
random vector

transpose of X(t), A(t), etc.
state transition matrix

weighting function or impulse response
matrix

n x n identity matrix
int
output vector for A = e u(t), zero
initial conditions
complex conjugate of Y(w,t)

a typical element of Y(w,t):

real part of yjz(a,t)‘
imaginary part of yjz(w,t)

Dirac delta function
expected value

correlation matrix of X(t)
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RFF(tl,t2) ’correlatipn matrix of F(t)
Sanlwy,w,) two-sided spectral density matrix
Fi 2 . s
of non-stationary F(t)
c 8 (w) two-sided spectral density matrix
FF .
of stationary F(t)
Rxx(t,t) variance matrix of X(t) with typical
diagonal elements R (t) and R (t)
XX, X. X
, 373 Tk
- R C oy
_ox.(t) Rx.x.(t) standard deviation of xj(t)
] J 3
r (t) cross correlation coefficient between
X.X
3%k components % and x,, see Eq. (2-23)
Py x (xj,xk,t) time variable joint probability
77k ' density function between components
X, and x,.
J k _
£ , threshold for response components
E[N+x'(£’t)] - time variable expected number of
3 positive crossings per unit time of
threshold & for response component xj
E(u, . (8)] expected number per rotor revolution

of positive crossings of level §



1. Introduction

While all preceding work under subject contract presented
in Phase I to IV reports and published in References (1) to
(3) w;s limited to the analysis of the response variance and
response level crossing statistics of a rigid flapping blade,
the present report deals with the extenéion of this analysis
to multidegrees of freedom systems, in particular to the in-
clusion of the torsional blade flexibility which in the high
advance.rafio regime with largé fegions,of reverse flow has
a signifgcant:effect on blade vibrations.

The éeneral response correlation theory is formulated
via the f:eétency response method using the state variable
approach which is convenient to treat multidimensional sys-
tems with feedback systems and with several input components.
However the algorithm for the digitél computer program makes
use of the fact that the same random excitafion occurs at
all inputs. Although some of the general derivations have
already seen‘published in Reference (3), they are included
‘herein for tﬂe sake of completeness. |

The numerical results for the example include both in
blade torsion and in blade flapping, the mean square response
values and the expected values of the rate of up-crossings
for nine response levels of the combined random flapping and
random blade torsion modei; In order to study the coupling

effects between blade flapping and blade torsion on the blade
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response characteristics, these numerical results are also
compared with the‘corresponding reéults from a one degree of
freedom model in which only flapping or only torsional de-

. flections are permitted.

According to the finding in the phase IV report, the
effects of longitudinally non-uniform turbulence over the
rotor plane are neglected and consequently the inflow exci-
tation at the rotor center is taken as the representative
of the vertical turbulence velocity distribution over the
entire rotor disk. However, the assumption that the self-
induced turbulence in the rotor pPlane can be neglected as
compared to the turbulence of the free atmosphere is re-
tained, and for computational purposes the Taylor-von Karmdn
tdrbulence spectrum has been approximated by an exponential.
low-pass type spectral density function. Though somewhat
inaécuraté, the assumption of qu#sirstatic aerodynamics has
been retained also for the coupléd_flapping-torsion problem.
The errors from not using unsteady aerodynamics.are probably
comparable td those from using a simplified analytical rotor
model with blades rigid in flap-bending and in chordwise
bending. The results cannot be expected to be quantitatively
correct, but they should provide the proper trends and valua-

ble insights into the mechanism of the random gust response.
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2. Response Covariance Matrix and Threshold Crossing Statistics

As indicated in Phase Iv Report the state variable ap-
proach for multidimensional systems provides a computationally
conveﬂient and mathematically compact representation of the
system dynamics. Therefore, preparatory to the description
of the blade response covariance matrix via the method of
harmqnic‘inputs, we first introduce a state vectop X(t). The
number of components, or the dimension of X(t) would depend
upon the number of degrees of freedom and the type of feedback
systems.‘ Ho;ever, we stlpulate that the state vector is of :
diﬁension n x 1 and that 1t is also identical to the response
vector. Now, the llnearlzed equatlons of motion of a llftlng

rotor system with finitely many degrees of freedom can be ex-

~pressed in the state vector form
X = A(t)X + B(t)F, X(0) =0, 0 <t<TT 2-1
or in index notation

l1,2,...n and

xj = ajk(t)xk + bjz(t)fz’ j,k

2 = 1,2,...m and n > m.

A(t) is the state or essential matrix which depends on the
system damping and spring parameters, while the coupling matrix
B(t) with elements representing the inpﬁt modulating functions
relates the input vector F(t) with the rate of state vector X(t).
Referring again to equation (2-1), we now define the state

transitien matrix by



%2 (t,8) = A(t) ¢(t,8) 2-2a
t
with the initial conditionmns

$(8,0) = I 2-2b

n

where In is a n x n identity matrix.
A typical jth column of the state transition matrix,

(¢

ij]’ i=11,2,...n, is the solution of the homogeneous equa-

tion (2-1) with F(t) = 0 and for the initial condition at

t = 0

xl 0

x2 0

X. = (1
]

xj+l 0

X YY)
n

For zero initial state, the solution of equation (2-1) is

given by the superposition integral

t
X(t) = ./. o(t,0) B(O)F(6)do (2-3)
0

The state vector being identical to the output, the weighting

function or the impulse response matrix can be expressed as

W(t,6)

®(t,06) B(9) t > 0
- (2-4)

0 : t

/A
[e0]

W(t,6)
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Therefore, according to equation (2-4) the state vector now

reduces to

t
x(t);f W(t,8) F(6)de 2-5
" (1}

When the input vector has zero mean values, from the linearity
of the system, the output vector will also have zero mean
values. Therefore the input and output covariance matrices

are equal to their respective correlation matrices defined by

\

- T -
Rpp(tyst,y) = BLF(t,) FT(t,)] 2-6

and

| T, .
Ryy(tys%,) = E[X(t)) XT(t,)] | 2-7

Inserting equation (2-5) into (2-7) one obtains with equation

(2-6) the response covariance matrix
t

t
1l 2
- T -
Rxx(tl’t'z) = / w('cl,e)clel [ RFF(el,ez)w (\t2,62)d62 2-8
0 0

THe weighting function matrix is of dimension n x m while
RFF(61’62) is the m x m covariance matrix of the input pro-
cess. According to the generalized Wiener-Khinchine relation
this input covariance matrix can be considered as the double’
Fourier transform of the spectral density matrix SFF(ml’w2)f
With RFP(61,92) expressed in terms of spectral density, Eg.

(2-8) takes fhe form
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For stationary input processes

SFF(wl’NZJ = ImG(wz-wl) ' (2-1y4)
therefore Eq. (2-13) simplifies to

Rxx(tl,t2)>= j Y*(m,tl) SFF(w) YT(u,t)dw (2-15)

or in index notation
o0 ’
(t,,t,) = s 2: z: y (w,t)s (w)y, (w,t )dw
xp 1*72 ] 1A je fzf kp

JoP = 1,2,.0.,0, (2-16)

By setting tl=t2=t in the above equation one gets the elements
of the statg,variance matrix which in real arithmetic simplify

to

. - m ® 2 2
% (t,t) = AEA2‘f [yjzc(w,t) + yjzs(m,t)] 8¢ ¢ (w)dw
' 0 v .

*3%3 £
m m'w )
' fgﬂ Qgi 2 [¥50e(0st) Yypelust) + PO} SIS
L1k 0 '
8 (w)d ' ) 5 2= 1,2500.on (2-17)
fofx

and

X.X

. . o .
R (t,t) = 2 [y:, (w,t)y (w,t) + ¥y (w,t)y (w,t)]
3%p » R.;l f jle plc jis pis

m m
sfzfz(m')dw g; k; 1; [y. !.c(“’ t)y (m,t) + yjzs(w,t).
k

ypks(w,t)] sfsz(w)dm JsP = 1,2,.44,40 (2-18)
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' t, t, rf® [ ‘
- "i.((d 0 —wze )
Ryx(ty2tp) = f W(t,,8,)d8, f U j Sppluysuyle 71T 2
0 0 .00 A

. .
dwldmz] W (t2,62)d02 (2-9)

where i = /-1.
When the order of integration in the above equation can
be 1nterchanged the scalar harmonic functions e ~iuy 0, and
1w262 can be considered in combination with the respective
weight;ng function matrices W(tl,al) and W (t2,62), and the

state covariance matrix can be expressed as

| { ti -iw‘e
Rxx(tl’tz) = J. w(tl,el)e 11 de, SFF<w1’w2)
- 0 ’ .
ts
T iw262 -
[J. W (t2,62)e deg]dwlde (2-10)
0

Observe that the superposition integral shown in brackets are
system responses to harmonic excitations; that is, the fre-

quency response matrix
t .
Y(w,t) = f wit,8)el®%ae (2-11)
A .
satisfies the state equation
f(w,t) = A(t) Y(w,t) + B(r)e*"" (2-12)
Substitution of Eq. (2-11) into (2-10) yields

- % T
R X(tl’tz) = [ J Y (wl,tl) SFF(ml’NQ) Y (wz,tz)dwldm2 (2-13)
0 =



where

sz(w,t)'z.yjzc(w,t) + 1yjzs(w’t)’ i = /=1

From the linéarity of the-system, ydzc(m,t) andvyjzs(w,t) are
also the deterministic system responses when the corresponding
'fandom input coﬁponents are replaced respectively by cos wt and
sin wt. Computatiomally this means, Eq. (2-12) has to be inte-
grated 2m times to generate thé n x m frequency response ma-
trix, Y(w,t) in real arithmetic. As mentioned earlier, a case
of special interest in our lifting rotor study is wheﬁ fl=f2=
see = fm=3,:éuch fhat the input spectra; density matrix SFF(w)
in Eq. (2-15) is replaced by the scalar spectral demnsity func-
tion Slx(w).j.0b39§§e that this is only a special case of Eq.
(2-12) in,wﬁich thelcoup;ing matrig B(t) and the frequency
responée“matrix X(m,t),redude to nx 1l co;umn_iectbrs; with

2=k=1 in Eqs. (2-17) and (2-18) we have

D

| 2 KT
ijxj(t,;) = 2.[ [yjolust) + vy (w,t)] 5, (w)du
0 o

j = 1,2;.'-,“ (2"19)

and
(]
ijx (t,t) = 2'[ [yjc(w,t).ypc(w,t) + yja(w,t) yps(w,t)]
P 0
sxx(w)dw ' j,p = 1,2,.-.,1'1 (2-20)
where, for a preset discrete value of w, deterministic response

yjc(w,t) andvyjs(m,t) are generated by solving Eq. (2-12) only

twice.
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In reliability and cﬁmulative damage studies it is of impor-
tance to know, in addition to the mean square response levels,
the variation of random response oscillations with respect to
several preset thresholds or response levels. Such threshold
crossing statistics or the expeéted value of the rate of up-
crossings of thresholds are required in the design of fatigue
tests and to estimate fatigue allowables etc. Under certain
conditions it is also possible to estimate the distribution
of response peaks and the total expected damage within a
given time interval; for details see Powell's formula on the
distribution of high level peaks in reference (6) and Roberts'
analysis (7) on cumulative damage due to non-stationary ran-
dom loading.

Let xj and X be two typical components of the response
vector X(t) in equation (2-1) suchAthat_*j = %, Then, the
expected value of the numbep of positive or up-crossings of
response level ¢ per unit time is given by the Rice Equétion
(8)

o

E[(N, . (§,t)] = f X3Py x (E,xk;t)dxk (2-21)

: 3 0 ik
AWhen the input vector F(t) in Eq. (2-1) is jointly Gaussian,
from the linearity of the system, the output vector is also

jointlnyaussian and the joint probability density function

X

Jxk(xj,xk;t) between xj and Xy is given by (referénce 8)



1 2
ijxk(xj ,xk,t) = (5'1-; xjﬂxk)Vl-rxijxk? exp [-4{0" Xy
- 2 2 2 2 2 J/1- ]
oxj xerjxkxjxk + oxkxj]|2oxja 1 rxjxk}
0.05(2-22)

Inserting equation (2-22) with xj = £ into equation (2-21) and -

performing the integration over.dxk one obtains (Reference 8)

f 2 o 2 .
- 1l 7 Xy £ 2 .
E[N+xt(£’t)] - [5? l-rxjxk (F__) e*P;‘(E“) /lz(l_rxjxk) ]

3 | xj xj
. g Er
1 Xy xjxk €2
SAPY.TAY 7 exp -( 2 ) 2
. X x } 20
e 3 %x
1 + erf(&r lo. Y2(1-v2 _ ) (2-23)
g ( xjxk xj xjxk 2]
~_where
2
oxj = E[xjxj]
)
ka = E[xkxk]
. _ E[x.xk]
xjxk oxjoxk
and
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3. Deterministic Response

The analytical model used for this study is described
in the follow;ng. A centrally arranged flapping hinge with
an elastic flapping restraint and linearized quasi steady
aarodynamics with reverse flow effects are stipulated. The
dynamic equations of motion of such a flapping blade includ-
ing the study of stability boundaries are given by'Sissingh
in Reference (4#). 1In thé present report wve relax the assump-
" tion that the blade is rigid in torsion by considering the
problem of combined random flapping and random blade torsion.
Therefore, wa briefly describe below the dynamic_equations
pf the hlade model, following the analysis of Sissingh and
Kuczynski (5).;

Under the stipulations stated earlier and further as-
suming a linear appro#iﬁatibn for the normalized torsional
mode shape the dynamic equations of blade flapping and blade

torsion read‘(S)
25 4 c(t)B + [31’-2- + K(£)IB - m, (t)6 = (£ (3-1)
Y Y "o, =™
15+ rc (t)é‘ [fz‘ K.(t)1s L. (t)B v Qb (t)B
3y 76 + ey + oK +Q rg I8+ Qg
=-Qt, (t)A ' (3-2)

The time unit t is selected in such a way that the rotor angu-
lar velocity is one and the period of one rotor revolution is
27. At an advance ratio greater than the tip-loss factor the

time variable system parameters c(t), X(t) etc. in Eq. (3-1)
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and (3-2) are non-analytic due to reverse flow. Therefore
these system parameters are approximéted by truncated
Fourier series valid over4the entire rotor disk.  Assuming
an advance ratio of 1.6 and a tip-l&ss factor of 0.97 we
present in figu?es la and 1b the system parameters mel(t);A
CG(t), Kd(t)’ zre(t), zré(t) and Erx(t)' For system para-
meters C(t), K(t) and mx(t) which pertain to the pure flap-
ping equation see Reference (2), pages 420 and 421. p in
Eq. (3-1) represents the elastic flapping restraint parame-
ter'which-iﬁ equal to one for zero flaéping hinge offset
and ;ero flépping regtraint, while a hingeless rotor can

be simualted with p > 1. For rotors with an elastic root

restraint, p increases with decreasing rotor speed:

p2 1 4 (w8[9)2 (3-3)
The inflow ratio A in Eq. (3-1) represents the vertical com-
ponent of the turbulence with zero mean value and with the
low-pass type expoﬁential spectral density function. ml(t)

and zrl(t) are called the input modulating functions.

For the sake of brevity we now introduce the notation

- 2
“Le(e) = by (t), L2+ K(£)] = 5B, (¢)

2

Y - -

T (1) = 88,(8), Lom (t) = a (1) (3-4)
L g2

3y FCG(t) = D62(t), 37[37 + st(t)]'= 862(t)

3y er(t) = saz(t), 3yQ£ré(t) = DB2(t) and —SszrA(t) = As(t)
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With the selected state vector

the blade flapping and tors

take the form

yir [ o 1

v, -SBl(t) -DBl(t)
val T | o 0

Yy ~_:882(t) -D82(t) -

As the state vector is iden
y c(w,t) and yjs(u,t) in Eq

obtained by solving the mat

and with A sin wt respect
In Figure 2, solid lin
histories of ylc(o,t) and y
the flapping and torsional
puts. The dotted lines in
coupled system obtained by
to zero in Eq. (3-6). The
constants which will be ret

studies are given below

u s 106’ B - 0097’ Y - u, p
I *
"1 (el 1
Since F = T; (f) ie and Q

= é (3-5)

and Yy

ion equations (3-1) and (3-2) now

0 0 ] Y.
ssl(t) ] Y, Ag (t)
0 1 Y3
S§.(t) -Dp§, (t) Ag (t)
2 2050 ] e (3-6)

ticai to the response vector,
s. (2-19) and (2-20) could be

rix Eq. (3-6) with A cos wt
ively.

es represent two typical response
3c(O,t) or according to Eq. (3-5)
deflections to modulated step in-
the same figure refer to the un-
setting SGl(t), SBQ(t) and DBz(t)-
assumed set of system parameter

ained in subsequent numerical

= 1.3, £f = 8, F = 0.24 and Q@ = 15.
_e 1
- 7 T L 9

R If
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if the 1ift slope for normal and reversed flow is assumed

to be the same, the selected parametér values for F and Q
correspond to a radius over chord ratio of (R/p) = 15.6

and to a ratio of flapping moment of inertia over feather-
ing momenf of inert1a of (Il/If) = 940. For these constants,
. according to the stability analysis of Sissingh and Kuczynski
(5) the system is wei; within the stability region; see also
Figure 8 of Reference (5). As expected yB(O,t) values of
the uncoupled system agree with the corresponding flapping
response hisfﬁries'shown in Figure 5 of Reference (2).

The computer solutions were obtained by a Runge-Kutta
library Subroutine with three timewise step-sizes: At = 0.2,
0.1 and 0.05. The numerical results with At = 0.1 and 0.05
were in good agre;ment, while the step-size of 0.2 was fouﬁd-
to be unsatisfactory. VTherefore this timewise step-size of
0.1 is maintained for all the numerical work presented in
this phase V-A report. From Figure 2 it is evident that
fhe coupling of torsional blade flexibility with blade flap-
ping amplifies pure torsional step input amplitude by about
61%, while the coupled flapping response is affected only to
a minor degree, This maximum amplification of torsional de-
flections occurs close to the central portion of the reversed
flow region which for our blade model, during the second rotor
revolution, lies within the azimuth range 3.27 € t < 3.8w,

The steady state is:reached almost after the first rotor
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revolution and the average flapping amplitude value of the
coupled system agrees well with that given by Sissingh and

Kuczynski (5).

4. Random Response

Tﬂe'computer results pertain to the combined random
flapping and random torsion model for which the modulated
step 1nput response history is shown in Fxgure 2. The as-
‘gsumed spectral density function of the vertical inflow,

which is the only type of input treated here, is given by

a

s,,(w) = —m———p for w < 3
A n(a2+m2)

SAA(N) =0 for |w| > 3

~

For the assumed value of turbulence scale over rotor radius

of (L/R) =12 ohe obtains (Reference 2)

2u/(L/R) = .266

a

The response statistical description includes root mean

'square values of the torsional and flapping deflections and
the expected values of the rate of up-crossings for sevefal
response levels. Only the second rotor revolution is shown
where the response variance matrix has become approximately
periodic witﬂ period.2w. Further, in the comparison of res-
ponse description between fhe coupled and uncoupled systems,

full lines refer to the flapping blade with torsional
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flexibility,vwhile the dotted lines to the uncoupled system
in which only flapping or torsional deflections are permitted.
This latter case is obtained by setting the coupling parame-

"ters S§ S8, and DB2 to zero in Eq. (3-1) and (3-2). The

1’ 2

mean values of response up-crossings are obtained from Eq.
(2-23) in which the response variance values of 8, g, § and
§ are computed from Eq. (2-19) and the cross-covariance
functions Rsé(t’t) and Rag(t’t) from equation (2-20). A
step-size of 0.1 was selected both with respect to time and
frequency, and the £equired computer time.on IBM 360/50
machine is ébout 12 minutes_to cover 9 response levels.

In Figures 3.and 4, the root mean square values of the
‘flapping and torsional deflections are given. It is instruc-.
tive to note that the coupling between blade flapping and
blade torsidnal‘flexibility‘influences aa(t) values only to
minég degree, where as its effect on os(t) is sigﬂificant;
the increasé in the peak value of os(t) is of the order of
33%,jwhep.t = 3,47, As expected this location of the peak
value is close to‘the central portion of tﬁe reverse flow
regioﬁ which for.our blade model lies within the azimuth
range of 3.27 to 3.87.

At this stage, it is worth comparing between oe(t) and
|yB(0,t)|, and between o (t) and Iys(o,t)l. As noted on
page 423 of Reference 2, the absolute values of system res-
ponse components to modulated step inputs.shown in Figures

5a and 5b, could be reépectively treated as the root mean
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square response values for the limiting case of L/R = =,
which is simple to interpret and economical to compute.
From the study of Figures é and 5a, it is seen that IyB(O,t)I
is a fairly satisfgctory engineéring approximation to ae(t),
the error ﬁith respect to the maximum value is roughly lq.S%
even_wifh the inclusion of torsiomal flexibility. Interest-
ingly enough, the order of percentage error betweeﬁ os(t)
and IyB(O,t)I is more or less the same both for the coupled
and uncoupled‘systems, see also Figure 6 of Reference (2).
However, from Figures % and 5b, what is significant is not so
much the 28;5% error with respect to the peak values of aB(t)
and Iys(o,t)l of the coupled system, but it is the significant
discrepancy in the paftern of variation. For the coprespond-
ing uncoupled system, see Figures 2 'and u,'oB(t) and ch(o,t)l
valges agree well with respect to the maximum pgak’values,
even fhough the péttern of variation differs significantly.
Thus, from the view point of establishing certain design
parameters of gust alleviating feedback systems etc., it ap-
pears théf the limiting case of L/R = » is satisfactory to
approximate the flapping response variance values, at least
for high altitude flight conditions where the turbulence
sdale length is much larger than the rotor radius. .However,
a similar approximation for torsional deflections could in-
troduce large errors. ‘
_Figures 6 and 7 show the expected Qalue of the rate of

up-crossings for response levels zero and one. Figure 6a
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in particular shows that the inclusion of the torsional
flexibility’has‘the effect of reduciﬁg sharp peaks in q;NB(O,tﬂ
mosf of which for the uncoupled system occur‘within a narrow
range of the azimuth angle. In other words, for a given
value of L/R the sample functions of random flapping of a'
blade with torsional flexibility would deviate more from .
the fespdnse histories to modulated step inputs than the
response sampie functions of a pure rigid blade flapping.
Both Figureés 6a and 6b indicate that for E =0 and £ =1,
che expected number of positive flapping crossings per rotor
'revolution or E[M+B(E)], is more or less the same for both
coupled and uncoupled systems.

In Figures 7a nad 7b, as in Figure 6, the méan valuesg of
the rate of up-crossings of random torsional deflections are
showﬁ for threshold levels of zero and one. It is seen that
the averagevvalue of the total number of zero crossings per
revolut?on or E[M+6(O)], is higher for fhe uncoupled system.
But, at £ = 1, the coupled system will have a higher value
of E[M+6(l)] than the uncoupled one. It is also interesting
to note that for both the coupled and uncoupled systems
_;[N+6(o,t)] and E[N+6(l,t)].have sharp peaks.at locations
"ét‘which Y5(°9t) crosses the'response levels of zero and
ohe’with pdsitive slope. |
| At this. stage we revert back to certain oSservations on
'page_423 of Reference (2). It was stated that positive and
‘negatiQe'turbulencéAvelocities occur on tﬁe average with

‘equal frequency‘sb‘that_during some rotor revolutions the
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response for L/R = ® will look like a curve in Figure 2a;
for an equal number of revolutions tﬁe response will be
given by the mirror image of this curve. For finite values
of L/R, zero crossings can occur at any time, with‘the most
. likely occurrence close to those for L/R = «», To gaiﬁ fur-
 ther insight int§ the variation of résponse sample functions
two response levels equidistant from the mean zero level are
selected, the parficular values of § in Figures 8a and 8b
being +1.75. Observe that for both coupled and uncoupled
systems the peék valge of q;+8kl'75’tﬂ occurs when t ~ 8.75.
Similarly for the uncoupled system the major peak value of
E+NB(-1.75,t) is in the neighborhood of t = 10.7. However,
for thevcoupled system most of the hp—crossings gith respecf
to the response level of --1.75 occur when t varies from 10.6
to 11.6. It is instructive to study Figures 8a and 9b in
confunctibn‘with Figure 2a. It is evident that for both the
coupléd and uncoupled éystems yB(O,t) values up-cross the
response level of 1.75 when t =~ 8.75. The mirroriimage of
 this response history also up-crosses § = ~1.75 at-t = 10.7
for the uncoupled éystem, and for the coupled system ﬁesponse
yB(O,t) with positive slope is almost at the ievel of -1.75 |
when t varies from 3.57 to 3.67.

Figures. 9a and 9b once again refer to the level crossing
statistics,-E[+N6(¢1,75{t)].The mirror image concept mentioned
earliep is approximately true for torsional oscillations, even

though one has now to consider up-crossings at close azimuth

locations.
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In Figure 10 the study of flapping response up-crossing
statistics is fﬁrther pursued by selegting higher response
levels. A significant observation is the negligible differ-
ence between coupled and uncoupled systems in E[N+B(E,t)]
values for £ > 2. Observe also that yB(O,t) values of cou-
pled and uncoupled systems are almost identical for response
levels higher than 2; see Figﬁre 2a. However, Figure 10
clearlj indicates'thét random flapping response peaks, both
for the-coupied and uncoupled systems, reach much higher
thresholdg than what is shown by yB(O{t) in Figurg 2a., Ob-
serve that in Figure 10 with t varying from 9 to 10, a few
response peaks indicate the possibility of up-crossiné a
threshold level of 6, which is about 2.15 times higher than
the maximum positive flapping amplitude of yB(O,t).

In order to relate the non-dimensional response levels
used here to Qimensional quantities it should be noted that
according to Reference (2) a staﬂdard deviation of vertical
gust velocity of 8 ft/s occurs at low altitude with about
.1% probability. For 300 ft/s blade tip speed and 280 knots,
giving u = 1.6, this results in g, = i.5°. The levels of B
and § indiéated in the figures are then to be multiplied by
1.5 and interpreted as degrees. It is seen that a f-level
of 6 cofresponds to a blade tip forsional defiection of 99,
and very high random torsional &eflections and loads will
occur in turbulence even with a blade of high stiffness

as indicated by the assumed torsional fréquency f = 8 per rev.
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In Figures 11 and 12, the threshold crossing statistics
~ of torsional deflections are shown fér E varyiﬂg from 2 to 6.
As observed earlier, sharp peaks in E[N+6(£,t)] values occur
~at locations at whlch y6(0 t) values crosses the corre-
spondlng threshold levels with positlve slope. It is also
seen that E[M+6(E)] values are increased due to coupling

with blade flapping, a fact also evident from Figure 2b.

5. Concluding Remarks

The previoué studies summarized in Reference (2) have
shown that high.random flapping vibrations and loads must
be expected whén flying an unloaded rotor at high advance
ratio in turbulent air. These flapping random vibrations
can be quite effectively alleviated by various feedback
systems as was shown in Reference (9). The present study
of coupled torsion and flapping random blade vibrations has
shown that the problem of random torsional motions and loads
at high>advance ratio is even more severe than the flapping
_ prdblem. Even in conditions substantially below the dyna-
mic stability limit, turbulence excited random torsional
vibrations are very high. éince the mechanism of these high
excitations involves the loss of torsional stiffness through
aerodynamic negative spring effects it is difficult to visua-
lize a feedb;ck system which could alleviate the torsional

random vibrations and loads. It was found that the aerodyna-

mic coupling between flapping and torsion considerably'
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aggravafes the torsion loads, though only a small effect

of this coupling on the flapping loads was established. A
more detailed study of the causes of the detrimental coup-
ling may produce some insight into possibilities of de-
vising a type of beneficial coupling which would alleviate
the'torsional vibrations without substantially increasing
the f;apping vibrations. The obvious next step is to study
the effects of positive and negative 63 qoupling on fhe,tor-

sional .random vibrations.:
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Figure 3. Time VariableAFlapping Standard Deviation



Timé Variable Torsion Standard Deviation.

Figure 4.
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Expected Rate of Flapping Upcrossing of
Level Zero (a) and of Level one (b)

Figure 6.
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